location$45235$ - traduzione in greco
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

location$45235$ - traduzione in greco

CONCEPT IN STATISTICS
Location family; Location model (statistics); Location parameters

location      
n. τοποθεσία, τοποθέτηση, εύρεση
place of birth         
PLACE WHERE A PERSON IS BORN
Birthplace; Birth place; Home towns
τόπος γεννήσεως
stud farm         
  • Einsiedeln Mews with ''Cavalli della Madonna'' horses.
  • Žabnik]] at [[Sveti Martin na Muri]], [[Croatia]], is owned by the ''Međimurje nature'' public institution
  • A large stud farm in [[Gdynia]], [[Poland]]
ESTABLISHMENT FOR SELECTIVE BREEDING OF LIVESTOCK (CATTLE, HORSES, ETC.)
Stud Master; Studmaster; Stud farming; Breeding farm; Stud-farm; Stud service; State stud; Stud master; Horse stud farm; Stud (location); Stud (place); Stud (range)
n. ιπποτροφείο

Definizione

location
(locations)
Frequency: The word is one of the 3000 most common words in English.
1.
A location is the place where something happens or is situated.
The first thing he looked at was his office's location...
Macau's newest small luxury hotel has a beautiful location.
= setting
N-COUNT: usu with supp
2.
The location of someone or something is their exact position.
She knew the exact location of The Eagle's headquarters.
= position
N-COUNT: with poss
3.
A location is a place away from a studio where a film or part of a film is made.
...an art movie with dozens of exotic locations...
We're shooting on location.
N-VAR: oft on N

Wikipedia

Location parameter

In statistics, a location parameter of a probability distribution is a scalar- or vector-valued parameter x 0 {\displaystyle x_{0}} , which determines the "location" or shift of the distribution. In the literature of location parameter estimation, the probability distributions with such parameter are found to be formally defined in one of the following equivalent ways:

  • either as having a probability density function or probability mass function f ( x x 0 ) {\displaystyle f(x-x_{0})} ; or
  • having a cumulative distribution function F ( x x 0 ) {\displaystyle F(x-x_{0})} ; or
  • being defined as resulting from the random variable transformation x 0 + X {\displaystyle x_{0}+X} , where X {\displaystyle X} is a random variable with a certain, possibly unknown, distribution (See also #Additive_noise).

A direct example of a location parameter is the parameter μ {\displaystyle \mu } of the normal distribution. To see this, note that the probability density function f ( x | μ , σ ) {\displaystyle f(x|\mu ,\sigma )} of a normal distribution N ( μ , σ 2 ) {\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})} can have the parameter μ {\displaystyle \mu } factored out and be written as:

g ( y μ | σ ) = 1 σ 2 π e 1 2 ( y σ ) 2 {\displaystyle g(y-\mu |\sigma )={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {y}{\sigma }}\right)^{2}}}

thus fulfilling the first of the definitions given above.

The above definition indicates, in the one-dimensional case, that if x 0 {\displaystyle x_{0}} is increased, the probability density or mass function shifts rigidly to the right, maintaining its exact shape.

A location parameter can also be found in families having more than one parameter, such as location–scale families. In this case, the probability density function or probability mass function will be a special case of the more general form

f x 0 , θ ( x ) = f θ ( x x 0 ) {\displaystyle f_{x_{0},\theta }(x)=f_{\theta }(x-x_{0})}

where x 0 {\displaystyle x_{0}} is the location parameter, θ represents additional parameters, and f θ {\displaystyle f_{\theta }} is a function parametrized on the additional parameters.